等腰三角形的性质有哪些?
1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。 2.等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合(简写成“等腰三角形三线合一”)。 3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。 4.等腰三角形底边上的垂直平分线到两条腰的距离相等。 5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。 6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。 7.一般的等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴。但等边三角形(特殊的等腰三角形)有三条对称轴。每个角的角平分线所在的直线,三条中线所在的直线,和高所在的直线就是等边三角形的对称轴。 8.等腰三角形中腰长的平方等于底边上高的平方加底的一半的平方(勾股定理)。 9.等腰三角形的腰与它的高的关系:腰大于高;腰的平方等于高的平方加底的一半的平方
等腰三角形有什么性质?
等腰直角三角形是特殊的等腰三角形(有一个角是直角),也是特殊的直角三角形(两条直角边等),因此等腰直角三角形具有等腰三角形和直角三角形的所有性质(如三线合一、勾股定理、直角三角形斜边中线定理等)。 当然,等腰直角三角形同样具有一般三角形的性质,如正弦定理、余弦定理、角平分线定理、中线定理等。等腰直角三角形三边比例为1:1:√2。
等腰三角形有什么性质?
1 等腰三角形的两个底角度数相等(等边对等角)。 2 等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合(等腰三角... 3 等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。 4
等腰三角形的性质?
1.等腰三角形的两个底角度数相等(简写成“ 等边对等角 ”)。 2.等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合(简写成“等腰三角形 三线合一 ”)。 3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。 4.等腰三角形底边上的垂直平分线到两条腰的距离相等。 5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。 6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。 7.一般的等腰三角形是轴对称图形,只有一条对称轴 ,顶角平分线所在的直线是它的对称轴。但等边三角形(特殊的等腰三角形)有三条对称轴。每个角的角平分线所在的直线,三条中线所在的直线,和高所在的直线就是等边三角形的对称轴。 8.等腰三角形中腰长的平方等于底边上高的平方加底的一半的平方(勾股定理)。 9.等腰三角形的腰与它的高的关系:腰大于高;腰的平方等于高的平方加底的一半的平方 。
等腰三角形的所有性质与判定定理?
一、性质定理 1、等腰三角形的两个底角度数相等(简写成“等边对等角”)。 2、等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合(简写成“等腰三角形三线合一”)。 3、等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。 4、等腰三角形底边上的垂直平分线到两条腰的距离相等。 5、等腰三角形的一腰上的高与底边的夹角等于顶角的一半。 6、等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。 7、一般的等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴。但等边三角形(特殊的等腰三角形)有三条对称轴。每个角的角平分线所在的直线,三条中线所在的直线,和高所在的直线就是等边三角形的对称轴。 8、等腰三角形中腰长的平方等于底边上高的平方加底的一半的平方(勾股定理)。 9、等腰三角形的腰与它的高的关系:腰大于高;腰的平方等于高的平方加底的一半的平方 二、判定定理 定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。 判定定理:在同一三角形中,如果两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
版权声明:本文内容为作者提供和网友推荐收集整理而来,仅供学习和研究使用。若相关内容侵犯您的合法权益时,请您联系我们,我们将根据中国法律法规和政府规范性文件,采取措施移除相关内容或相关链接。句子大全网对互联网版权绝对支持,净化网络版权环境。