句子精选

精选数学名言欧几里得几何的美【29句】

占占有欲丶 发表于:2024-06-09 点击:60

数学名言欧几里得几何的美

1、欧几里得几何有时单指平面上的几何,即平面几何。本文主要描述平面几何。三维空间的欧几里得几何通常叫做立体几何。高维的情形请参看欧几里得空间。黎曼流形上的几何学,简称黎曼几何。是由德国数学家G.F.B.黎曼19世纪中期提出的几何学理论。黎曼将曲面本身看成一个独立的几何实体,而不是把它仅仅看作欧几里得空间中的一个几何实体。他首先发展了空间的概念,提出了几何学研究的对象应是一种多重广义量。黎曼几何中的一个基本问题是微分形式的等价性问题。黎曼几何与偏微分方程、多复变函数论、代数拓扑学等学科互相渗透,相互影响,在现代数学和理论物理学中有重大作用。

2、数学名言的几何几何无王者之道。——欧几里德(约前325-约前265)

3、欧氏几何公理是欧几里得建立的几个几何公理,也称欧式几何,它的建立,采用了分析与综合的方法,不止是单独一个命题的前提与结论之间的连结,而是所有几何命题的连结成逻辑网路。

4、凡是直角都相等(角公理);

5、《几何原本》前6卷是平面几何内容.第I卷内容有关点、直线、三角形、正方形和平行四边形.第I卷命题47是著名的毕达哥拉斯定理:「直角三角形斜边上的正方形等于直边上的两个正方形之和.」

6、欧几里得几何指按照古希腊数学家欧几里得的《几何原本》构造的几何学。

7、欧氏几何源于公元前3世纪。古希腊数学家欧几里德把人们公认的一些几何知识作为定义和公理(公设),在此基础上研究图形的性质,推导出一系列定理,组成演绎体系,写出《几何原本》,形成了欧氏几何。按所讨论的图形在平面上或空间中,又分别称为“平面几何”与“立体几何”。

8、线段(有限直线)可以任意地延长;

9、欧几里得几何简称“欧氏几何”,是几何学的一门分科。数学上,欧几里得几何是平面和三维空间中常见的几何,基于点线面假设。数学家也用这一术语表示具有相似性质的高维几何。

10、《几何原理》也称《几何原本》[Elements]由希腊数学家欧几里得[Euclid,公元前300年前后]所着,是用公理方法建立演绎数学体系的最早典范.是至今流传最广、影响最大的一部世界数学名著.?

11、几何无坦途。——米内克穆斯(Menaechmus)

12、以任一点为圆心、任意长为半径,可作一圆(圆公理);

13、不懂几何者勿入。——柏拉图

14、过相异两点,能作且只能作一直线(直线公理);

15、《几何原本》共13卷.每卷[或几卷一起]都以定义开头.第I卷首先给23个定义,如「点是没有部分的」,「线只有长度没有宽度」等,还有平面、直角、锐角、钝角、并行线等定义.之后是5个公设.欧几里得先假定下列作图是可能的:

16、没有为国王特设的通往几何学的道路。——Euclid(欧几里得)

17、其中公理五又称之为平行公设(ParallelPostulate),叙述比较复杂,并不像其他公理那么显然。这个公设衍生出“三角形内角和等于一百八十度”的定理。在高斯(F.Gauss)的时代,公设五就备受质疑,俄罗斯数学家罗巴切夫斯基(NikolayIvanovitchLobachevski)、匈牙利人波尔约(Bolyai)阐明第五公设只是公理系统的一种可能选择,并非必然的几何真理,也就是“三角形内角和不一定等于一百八十度从而发现非欧几里得的几何学,即“非欧几何”(non-Euclideangeometry)。

18、两直线被第三条直线所截,如果同侧两内角和小于两个直角,则两直线则会在该侧相交。

19、如果欧几里得几何未能激起你少年时代的热情,那么,你就不是一个天生的科学思想家。——爱因斯坦

20、(1)从某一点向另一点画直线;

21、(2)将一有限直线连续延长;

22、第5公设即所谓平行公设:「若一直线与两直线相交,使同旁内角小于两直角,则两直线若延长,一定在小于两直角的两内角的一侧相交.」

23、(3)以任意中心和半径作圆.即他假定了点、直线和圆的存在性作为其几何学的基本元素,如此他就可以证明其它图形的存在性.

24、给我一个支点我可以撬动整个地球

25、另一方面,欧几里得几何的五条公理并未具有完备性。例如,该几何中的所有定理:任意线段都是三角形的一部分。他用通常的方法进行构造:以线段为半径,分别以线段的两个端点为圆心作圆,将两个圆的交点作为三角形的第三个顶点。然而,他的公理并不保证这两个圆必定相交。因此,许多公理系统的修订版本被提出,其中有希尔伯特公理系统。

26、[自此以后,有许多学者认为这一公设可以证明,并试图寻求证明,未能成功.直到19世纪,高斯、罗巴切夫斯基和波尔约分别独立地由此发展出非欧几何学.]公设之后有5个公理,它们一起构成了整部著作的基础.当时认为公理是对所有学科都适用的.如第1个公理「与同一事物相等的事物,彼此相等」.由这些基本定义、公设、公理出发,欧几里得运用严格的逻辑工具在第I卷中共推出48个命题,这也是整部著作的特点.?

27、几何看来有时候要领先于分析,但事实上,几何的先行于分析,只不过像一个仆人走在主人的前面一样,是为主人开路的。——西尔维斯特(JamesJosephSylvester1814-1897)庞加莱

28、第4个公设假定所有的直角都相等.

29、欧几里得(公元前330年—公元前275年),古希腊数学家。他活跃于托勒密一世(公元前364年-公元前283年)时期的亚历山大里亚,被称为“几何之父”,他最著名的著作《几何原本》是欧洲数学的基础,提出五大公式,欧几里得几何,被广泛的认为是历史上最成功的教科书。


>>相关标签内容推荐:    
>>以下同类内容推荐阅读:

1. 表达感谢朋友的句子,感谢的话语简短精辟

2. 发朋友圈秒赞的句子,高情商文案经典语录

3. 简短祈祷的句子经典,寺庙祈福文案短句

4. 被美食治愈的文案,走心又走胃的美食短句

5. 形容春运的句子,过年回家路上的心情文案

版权声明:本文内容为作者提供和网友推荐收集整理而来,仅供学习和研究使用。若相关内容侵犯您的合法权益时,请您联系我们,我们将根据中国法律法规和政府规范性文件,采取措施移除相关内容或相关链接。句子大全网对互联网版权绝对支持,净化网络版权环境。

阅读更多
推荐图文
猜你喜欢